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We discuss the quantum-mechanical scattering of electrons from a disordered quasi-one-
dimensional wire in terms of its transfer matrix T. An alternative method for the determination
of the limiting probability distributions of the eigenvalues and eigenvectors of In TT' is presented.
It generalizes a previous approach which was successfully applied to the one-dimensional limit. We
show rigorously that the orientations of the system of eigenvectors of equivalent-channel models
which were discussed in earlier work are uniformly distributed.
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Substantial progress in the analytical understanding of
electron scattering from disordered samples connected to
ideal multichannel leads has been made [1-4] during the
past few years. Nowadays this field receives widespread
interest since it is closely related to multiple scattering
of classical waves in random media [5] and also because
of its importance for the theory of quantum chaos [6].
Solid-state physicists became interested in the problem
when Landauer discovered [7] that the zero temperature
resistance of a finite one-dimensional (1D) disordered sys-
tem can be expressed in terms of its quantum-mechanical
transmission properties. Various authors [8] extended the
idea to quasi-1D wires with many channels. The scatter-
ing approach was applied in numerical finite-size scaling
analyses of the Anderson transition [9] and used to ar-
gue [10] in favor of the one-parameter scaling theory [11].
Weller and Kasner [12] combined it with Berezinskii’s di-
agrammatic method and constructed a recursion scheme
for the calculation of the localization length of coupled
disordered chains. Pendry and co-workers obtained vari-
ous results [13] by expressing the transmission properties
in terms of the transfer matrix T.

The transfer matrix transforms the amplitudes of the
propagating wave modes at the Fermi energy (channels)
on the left side of the sample into the amplitudes on
the right side. Thus, the transfer matrix of two samples
joined together is the product of the transfer matrices
of each sample. For a long disordered sample consisting
of thin slices, T can be obtained by multiplying a large
number of random matrices. Without spin-orbit scatter-
ing and without a magnetic field, T can be written in a
polar decomposition which respects time reversal invari-
ance and flux conservation [14,15]
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where u and v are unitary N X N matrices and A is di-
agonal, real, and positive. The eigenvalues of TT' are
exp £I'; where coshI'; = 1 4 2X;. The corresponding
eigenvectors are essentially the columns of u. From the-
orems on random matrix products [16,17] one expects
that u and v have stationary limiting probability distri-
butions for large system lengths L and that a; =T';/2L
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are self-averaging. ag® = limz_,o aj (L) are the Lya-
punov exponents of T. They characterize the exponen-
tial growth of A\; with L. The two-terminal conductance
for spinless electrons in units of e?/h is given by [18,19]
g = Z;V:I 2/(1 4+ coshT;). Since g = exp(—2a$°L) for
large L, the smallest Lyapunov exponent a§° is identified
with the inverse localization length 1/¢.

For continuous models one can derive a Fokker-Planck
equation (FPE) for the evolution of the probability dis-
tribution of T with L, as shown in a pioneering paper
by Dorokhov [14]. He investigated a microscopic model
of N weakly coupled chains and calculated the N de-
pendence of the localization length. The validity of his
results was limited to weakly disordered samples with a
cross-sectional diameter of less than the mean free path.
This was due to an average over the L dependence of the
drift and diffusion coefficients which oscillate rapidly with
L in such samples. The recent discovery of the univer-
sal conductance fluctuations in metallic mesoscopic sys-
tems [20] led Mello, Pereyra, and Kumar [1] to design a
model which was amenable to a rigorous analytical eval-
uation of quantities like the mean and the variance of the
conductance in the metallic regime. They specified the
probability distribution of a thin slice by maximizing its
entropy under the constraint that the conductance obey
Ohm’s law. As a consequence, u and v were uniformly
distributed on the unitary group for all system lengths
and a closed FPE for A could be derived. There were
no correlations between A, u, and v. It has been shown
that this “isotropic model” (IM) is intimately related to
a global maximum entropy approach on the space of the
transfer matrices [21]. In the sequel, the IM was gener-
alized in order to include a magnetic field and spin-orbit
scattering [22-24]. An exact solution of the magnetic-
field case is now available [4]. All of the obtained results
are in precise agreement with those of microscopic mod-
els for metallic quasi-1D samples [20,2]. However, 2D
and 3D samples cannot be described within the IM be-
cause the maximum entropy approach eliminates all the
information about the transverse structure of the sample.
In order to overcome this difficulty Mello and Tomsovic
[25] introduced a more general phenomenological model
which takes the transverse structure into account. Re-
cently Chalker and Bernhardt [26] considered a special
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case, namely weakly coupled wires. They expressed the
Lyapunov exponents of TT in terms of the large-L lim-
iting probability distribution of u and constructed an ap-
proximation scheme to calculate relevant features of this
distribution. This allowed them to study the Anderson
transition within their model.

In the present paper we will show that the oscillations
of the drift and diffusion coefficients can be treated in
a systematic way which extends the range of validity of
the FPE to samples with arbitrary transverse extension
and disorder. The expression for the Lyapunov expo-
nents in [26] is recovered. In addition, we express all
the moments of I'; in terms of the large-L limiting prob-
ability distribution of u. The latter is the stationary
solution to a FPE which is explicitly derived. An al-
ternative method which will allow us to determine the
stationary solution for more than two wires is presented.
Here we use it to show rigorously that the stationary so-
lution of equivalent-channel models (ECM’s), which were
discussed in an earlier work, is the uniform distribution
on the unitary group.

We consider disordered 1D wires which are coupled by
random hopping matrix elements,

H,p = —6 i 9%+, 2

nn! = “Onn' o Op + Van' (2), (2)

where V,,/(z) is real and symmetric in its indices.

Vit () is zero in the leads and stochastic for = € [0, L].

It describes on-wire disorder and/or random hopping

between the wires. The randomness is assumed to be
Gaussian white noise with zero average

(Van (‘T)me’ (ml»

— nn,&(m — m')(énmén:m: + (snm"sn’m)- (3)

The inverse mean free paths for backward and for-
ward scattering from wire n into wire n' are de-
fined by 1/l = limgr—o|rnn|?/6L and 1/1,.,
limsz—0 |tnn'|?/0L, respectively. 7n, and t,, are the
reflection and transmission amplitudes of a thin slice of
length 6L, respectively. Here, they are given by 1/l,,,,s =
1/l = (m/A%k)2Uppn (1 + 6pn') where E = (Bk)?/2m is
the energy of the scattered electron.

In order to eliminate as many coordinates as possible,
we follow Dorokhov [14] and study M = TT!, which
eliminates v. Assume that the probability distribution
p(L; M) of the matrix M for a system of length L is
known and a thin slice of length §L is added. Since the
disorder is uncorrelated, one can derive the convolution
property [27]

B(L+6L; M) = (B(L; T M(T) L) ™ Nz, (4)

where ( )(z,s1) is the disorder average over the transfer
matrix Tsz of the slice. The measure of 5(L; M) is

N

= J(T) [] dridu(u), (5)

=1

dp(M)
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where J(T') = [];_;|coshT; — coshI';|]],;sinhT;. The

measure is invariant under the transformation TMT'
for any T [27]. dp(u) is the invariant measure on the
unitary group. Equation (4) is the starting point for the
derivation of the FPE of p. We want to treat the large-
L limit of the probability distribution p(L;T',u,u*) :=
J(I)p(L;M). This leads to a considerable simplifica-
tion [28,14]. Due to the self-averaging of a; one expects
that I'; can be ordered 1 < I'1 K I'; < -+ < 'y if
L > ¢ =1/ag°. Therefore, we approximate cothT'; ~ 1,
sinhT";/(coshT'; —coshT%) = 1ifi > kor =~ 0if ¢ < k and
extend the range of all I'; to —oo [28]. Then all except
one selected I'; may be integrated out. The FPE for the
resulting probability distribution p;(L;T';, u,u*)

Op. . « .
= (488, + B;or, + O)p; (6)

correctly describes the bulk of the probability distribu-
tion of I'; for large L. The operators A;, B;, and C acting
on u and u* are [27]

N 1

B; = —[AT;] + 84, [AT AUpy] + Ous, [AT AU, ],
¢=- g [DlUmn]| — u‘ [Au:nn]

+ Oupnp Our, , [Atmn Aug,, ')

+ %aum,.aum:n: [AumnAum'n’]

+ 50u O (A A ) (7)

where a summation over repeated indices is understood.
AT, Au, and Au* are the changes of the parameters of M
which are induced by the transformation T;I];M(T} L)~
and [ . ] = hm(;L_,o(l/(SL)( . ) (L,6L)- Note that the
derivatives in Eq. (7) treat u,,, and u},, as independent
without taking the unitarity of the matrix u into account.
But since the FP operator commutes with the delta func-
tion §(1—wuuf) [27], unitarity is conserved . The terms in
the brackets can be obtained by second-order perturba-
tion theory or by iteration of the Langevin equations for
T and u. For the derivation of the Langevin equations
Tsz, is needed to first order in 6L,

I

Tsp =1+ (77 7” )5L+0(5L2) (8)

where v, = —zm/fisz,m (L), Nnn' = €xXp(—12kL)ynn:.

The operators A], BJ, and C do not depend on I';. But
due to the factor exp(—¢2kL) in 5(L), they contain terms
which oscillate around zero with L. This L dependence
can be removed approximately for weak disorder [14], or
exactly by a variable transformation. Both alternatives
are independent of the above approximations for large
L. They can be applied to the original FPE as well.
For weak disorder, the condition kl,,' > 1 holds for all
mean free paths. The smallest mean free path l,,,,; sets a
characteristic distance over which the probability distri-
bution changes. So if kl,,n; > 1 the L-dependent terms
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oscillate very often over this distance. This justifies the
average over the oscillations (oscillating phase approxi-
mation). It is worth stressing that the validity of this
approximation is not limited by the number of wires, in
contrast to models with a fixed interwire coupling [14].
We note that the oscillating phase approximation leads
to the same model as the weak disorder limit of the phe-
nomenological model of Mello and Tomsovic [25] if their
mean free paths l,,,,/, I/,,., for backward and forward scat-
tering are assumed to be identical. Thus the weak dis-
order limit of our model is a microscopic realization of a
subclass of their model. For stronger disorder, the oscil-
lating phase approximation is no longer valid. Instead,
one can introduce the variable 4, exp(ikL), which will
be denoted by the same letter u,,, for notational con-
venience. The FPE in Eq. (6) is transformed to this
variable by removing the factor exp(—i2kz) of 7,,: and
adding the term —ik(umnOu,,, — UppOus, ) to C. This
is a systematic way to treat the oscillating terms, which
yields the same results in the weak disorder limit but is
exact. We emphasize that such a transformation can be
found in general for all kinds of models.

Having removed the L dependence, we get a FPE
which has a formal structure similar to the one in the
work of Kree and Schmid for a strictly 1D wire [28]. For
N = 1 their result is reproduced. We proceed analo-
gously and introduce the characteristic function

P;(L; &j,u,u*) =/df'j exp(i€;T;)p;(L; T, u,u*) (9)

for the moments of T';,

Wn=/wme@mamgmwmﬂ-um
|

qSt(u7u ) - E :cmlnl ‘Mgna,miny- mbnbum1n1

Since one expects g,: to be unique, one can pursue the fol-

lowing strategy. Try to find a solution of Cqet = 0 in the
higher dimensional space of ¥, and u},,, which has the
form given in Eq. (13). Then the property that different
polynomials are linearly independent will lead to systems
of linear equations for the expansion coefficients which
have to be solved. It is not sure that a solution exists and
it will not be unique since Cf( uf)g,: = f(uuT)Cq,,t for
any f. But if it exists, the restriction to the submanifold
uu’ = 1 should be unique Now we apply this to the case
that Uppr = U/(N+1) sothat 1/l = 1/, = [1/I(N+

1](1 + 6pnr) and investigate the weak disorder limit. As
indicated above, the weak disorder limit of our model is
a special realization of the model of Mello and Tomsovic
[25]. They termed the case in which the backscattering
mean free paths have the above form ECM and proved
that these models are equivalent to their former IM as far
as averages over functions of I' are concerned. We note
that the choice U,,' = U/(IN +1) represents a continuous
1D N-orbital model [30] coupled to ideal leads. This
links the IM to the model of Iida, Weidenmiiller, and Zuk
where a discrete 1D N-orbital model was coupled (though
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At L =0, M = 1. Therefore, I' = 0 and u is arbitrary.
For convenience, we choose the initial probability distri-
bution p;(0;T';,u,u*) = §(T'j)gs¢(u, u*) where g, is the
stationary solution of the FPE Cqs: = 0. The character-
istic function is given by

P;(L;€;,u,u*) = exp {(—ff-/i,- - i{,ij + C')L} Qot-
(11)

For the calculation of (I';) we have to expand the
exponential in Eq. (11) and to keep the terms
—i&;C*B;C* L*+*¥'+1/(k + k' + 1)! which are linear in
&;. Since Cq.: is zero by definition and the integral
S du(u)é f(u,u*) gives zero for any continuous complex
function f on the unitary group [27], we obtain

<nn=—L/wm)ﬂu (12)

The evaluation of the first term of E’j in Eq. (12) leads
to the expression for the Lyapunov exponents which was
derived in [26]. Thus the second and third terms of B;
must not contribute to (I';). We can prove this for the
case of one wire and have checked it for some examples of
N wires. Therefore we believe that it is true in general.

The key problem is the determination of gz;. The irre-
ducible representations of the unitary group form a com-
plete system. Their matrix elements are polynomials in
Umn and u),,, [29]. Therefore, ¢,; has an expansion of the
form

(13)

* *
Um,n, um'ln’l u’m{,nL :

f

in a different way) to ideal leads. A similar system has
been already investigated in [31].

Assuming that ¢, is unique, we will now prove, and
this is our central result, that ¢, = 1 for ECM’s,
i.e., u is uniformly distributed on the unitary group.
The FP operator C has the form kCy + (1/1)C; where
Co = —i(umnaumn - 4}, 0u: ). Expanding g,; into
g0 + (1/kl)qy + --- one obtains two equations involving
90, Coqo = 0 and C'oq1 + Clqo = 0. The first implies
that go only contains polynomials with the same total
degree in 4, and u},,. Let us denote the projector
onto polynomials of this type by b.. Applying P, to the
second equation leads to ﬁeélqo = ﬁeélﬁeqo = 0. This
defines qo completely. The point is that the terms in
C; which have no derivatives and which remain after the
projection onto P.C1P. only depend on the backscat-
tering mean free paths and are zero if uut = 1. Re-
moving these terms leads to an equivalent FP operator
Co+ (1/kl)C} in the sense that the evolution on the sub-
manifold uut = 1 is identical [27] Now it is obvious that

go = 1 is a solution since b, C P. only contains terms
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with derivatives with respect to u,,, and u},,. This
proves the assertion. Inserting go = 1 into Eq. (12)
leads to (';)z = (2jL/l)/(N + 1). Further results are
obtained by applying the oscillating phase approxima-
tion to Eq. (6). Then A; and the first term of B; do
not depend on u anymore. Integration over u leads to a
closed FPE for I'; which is solved by a Gaussian prob-
ability distribution with the above mean and the vari-
ance var{I';} = (4L/l)/(N + 1). These results are in
accordance with those of Macédo and Chalker [24] for
the IM as expected [25]. In addition, we find that T'; are
Gaussian distributed.
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In conclusion, the FPE describing quantum transport
in disordered systems in the localized regime has been ex-
tended to samples of arbitrary transverse extension and
disorder strength. Several connections between micro-
scopic and phenomenological models have been estab-
lished. An alternative method to calculate the limiting
probability distribution of u has been applied to ECM’s.
We plan to apply it to models with three, four, or more
wires in which only nearest-neighbor wires are coupled.

Stimulating discussions with W. Apel, R. Kree, and J.
L. Pichard are gratefully acknowledged.
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